

Inside an Emulator

Maarten ter Huurne
T-DOSE 2014

About the speaker

openMSX

GameCube + Wii

dolphin-emu.org

MSX

openmsx.org

About the speaker

openMSX

2008, 2011

235 commits

2001-2014

2992 commits

Contents

● What is emulation?
● How does it work?

– CPU emulation
– Peripheral emulation
– Synchronization

● Thinking non-linearly
– Determinism
– Tool-Assisted Speedruns
– Debugger with single-step-back

What is an emulator?

A program to duplicate the behavior of
one machine on another machine.

Host: machine running the emulator

Guest: machine being emulated

Types of emulation

Type: Host: Guest:

Full-system machine A machine B

Virtualization machine A machine A

Virtual machine machine A imaginary
machine

Guest machine: MSX

Guest machine: inside

Guest machine: components

Guest machine: components

CPU

ROM RAM video audio etc.

memory peripherals

processor

Guest machine: components

CPU

ROM RAM video audio etc.

memory peripherals

address bus

data bus

processor

CPU: executing an instruction

● Fetch
– read instruction from memory
– increase program counter

● Decode
– figure out what operation to execute

● Execute
– perform the actual operation

CPU: interpreter

Fetch, decode, execute instruction every
time.

Advantage:
● Simple

Disadvantage:
● Slow

CPU: Just-In-Time compiler

Fetch and decode instructions once,
generate host code for execution.

Advantage:
● Fast

Disadvantages:
● Complex
● Host code generation is not portable

Peripherals

Application

System

Hardware

Peripherals

Application

System

Hardware

High-level emulation
● fast
● more direct mapping to

host system

Peripherals

Application

System

Hardware

High-level emulation
● fast
● more direct mapping to

host system

Low-level emulation
● accurate
● no assumptions about

(use of) system layer

High-level emulation

Interpreter: (Fetch ; Decode ; Execute)*

● Intercept at fetch:
high overhead

● Intercept at decode:
patch system with illegal instruction

High-level emulation

JIT Compiler: Fetch ; Decode ; Execute*

● Intercept at fetch (code generation):
instead of generating code for a system
routine, jump to an emulation routine

Low-level: input/output

CPU

ROM RAM video audio etc.

memory peripherals

address bus

data bus

processor

Low-level: input/output

Instruction reads from or writes to a peripheral

I/O mapped I/O:
● dedicated in/out instructions
● peripheral selected by I/O port number

Memory mapped I/O:
● general load/store instructions
● peripheral selected by special memory address

I/O address mapping

<RTC id="Real time clock">
 <io base="0xB4" num="2" type="O"/>
 <io base="0xB5" num="1" type="I"/>
</RTC>

<WD2793 id="Memory Mapped FDC">
 <mem base="0x7FF8" size="4"/>
</WD2793>

Peripheral emulation

Data Device::read(Addr a) {
return reg[a];

}

void Device::write(Addr a, Data d) {
reg[a] = d;

}

Active peripherals

Change state or produce output in between
I/O operations

Video Audio

Multi-threading

Emulate active peripheral in host thread

● Low timing accuracy
● Synchronization is expensive

Static interleaved execution

Emulate active peripheral every N guest
clock ticks

Emulate video chip
● once per frame,
● once per line,
● once per pixel?

The challenger

Unknown Reality by NOP

Video Audio

Timestamped on-demand sync

CPU

Peripheral 1

Peripheral 2

Time →

Timestamped on-demand sync

CPU

Peripheral 1

Peripheral 2

Time →

Timestamped on-demand sync

Data Device::read(Addr a, Time t) {
sync(t);
return reg[a];

}

void Device::write(Addr a, Data d, Time t) {
sync(t);
reg[a] = d;

}

TS on-demand sync: interrupts

CPU

Peripheral 1

Peripheral 2

Time →

TS on-demand sync: interrupts

Sync point:

Guest time stamp at which peripheral
emulation needs to run

● Peripheral registers sync point at
predicted time of interrupt request

● CPU will execute until first sync point,
then corresponding peripheral runs and
can raise interrupt request

Determinism

old state + input → new state

Deterministic:

New state depends on nothing else

Determinism: why?

old state + input → new state

Deterministic emulation is reproducible:
● helps with reproducing bugs
● required for accurate emulation
● enables emulator-only features

Determinism: how?

old state + input → new state

Non-determinism comes from host:
● if emulation result depends on host state
● if host timing is relevant

Determinism: how?

old state + input → new state

To eliminate non-determinism:
● model use of host state as an input
● do all timing using guest time stamps

Determinism: random?

old state + input → new state

Pseudo random:

only looks random to casual observer

Real random:

always comes from input

Determinism: replay

old state + input → new state

state snapshot

+

input recording

↓

reproducible replay

Speedruns

Complete a game as fast as possible:
● careful planning
● glitch abuse
● execution skill

Goals:
● challenge
● entertainment

Tool-Assisted Speedruns (TAS)

Complete a game as fast as possible:
● careful planning
● glitch abuse
● execution skill use of emulation tools

Goals:
● challenge
● entertainment
● find limits

Tool-Assisted Speedruns (TAS)

Emulation tools:
● per-frame recording
● re-recording
● disassembly
● luck manipulation
● algorithmic input generation

Tool-Assisted Speedruns (TAS)

Demo

Tool-Assisted Speedruns (TAS)

TASVideos – tasvideos.org

Video archive:
● rendered movies
● input recordings

Community:
● resources
● discussion

Debugger with single-step-back

● Input recording in memory:
replay to any point in history

● Regular snapshots:
replay quickly to any point in history

● Replay until timestamp:
replay quickly to any point in history
and stop there

● Combined:
replay until just before previous
instruction

Debugger with single-step-back

Demo

Conclusions

● Many different implementation options
● Often trade-off between accuracy and

execution speed – but not always!
● Determinism + input recording → replay
● Emulation can provide unique ways to

analyze system behavior

